高校建筑能耗监测系统的应用 安科瑞鲍静君
1、概述
我国大型公共建筑年耗电量约占全国城镇总耗电量的22%,每平方米年耗电量是普通居民住宅的10~20倍,是欧洲、日本等发达国家同类建筑的1.5~2倍。
对于大型公共建筑而言,能源消耗情况非常复杂,只有实现建筑内各耗能环节分项计量,才可能真正把实际各类系统的能耗状况和合理的用能配额相比较,确定差异的形成,明确进一步的节能潜力。
2、校园建筑能源管理系统的可行性分析
高等院校作为大型公共建筑中的一部分,它集教学、科研和生活于一体, 占地面积大、建筑类型多、功能划分区较复杂,既是人口的高密度区,更是重要的能源消耗大户。
我国绝大多数高等院校人工管理电、水、气的消耗量。原始的人工抄表存在多种问题,如:数据不精确、实时性差、工作量大、管理难度大等。能耗管理部门也没有其他直接有效的手段,获取的实际能耗信息,也无法进一步提出节能方案,有效降低能耗。因此更无法对不同类别耗能进行有效正确的分析,因此制定针对性的能耗管理政策尤为关键。
建筑能耗分析管理系统不仅可以分析高耗能设备能耗产生的主要原因,还可以分析办公、生活能耗与气候、人数以及建筑结构之间的关系,即使用一个平台对不同建筑类型建筑的节能潜力进行研究,同时跟据数据分析结果选择正确的节能方法以达到节能的目的。
3、Acrel-5000能耗分析管理系统的优势
1)保证面积庞大的供配电系统安全可靠供电;
2)了解供电隐患,快速定位故障和排除故障;
3)实时准确统计学校各部门、院系和宿舍的用电量,做到独立核算;
4)提高了管理效率,减少人力成本。
4、Acrel-5000能耗分析管理系统在北京电气工程学校项目中的应用
4.1项目概况
北京电气工程学校一校五址,建筑面积21133平方米,校内建有行政楼、教学楼、实验楼、师生餐厅、宿舍楼、体育楼等楼群。变配电室是校园内的电力中枢采用电度表实现电度计量,其运行设备的情况依旧依靠人工巡查,远远不能满足安全运行的要求,当出现运行故障、设备老化等情况时,无法及时进行故障隔离使得停电范围不会扩大。对于实验室等重要用能部门的电能质量也没有监测和**。需要通过建立实时监控来保证用能系统的安全运行。同时北方院校的供热系统同样需要运行的安全监测,可增加智能控制,通过电动调节阀的开闭来控制热量,合理用能。
安科瑞电气股份有限公司承接北京电力工程学校能耗管理系统的设计、施工及调试。主要完成对现场能耗的集中采集及分析,通过对用户端所有能耗进行细分和统计,以直观的数据和报表向管理人员或决策层展示各类能源的使用消耗情况。
4.2 组网结构
系统采用分层分布式设计,由站控管理层、网络通讯层、现场设备层组成。可以实现远方的监视控制,也能够在上层故障时不影响本层和下一层的功能。
各个结构层的具体形式如下:
1)站控管理层
软件管理层针对配电系统的管理人员,是人机交互的直接窗口,也是整个系统的*上层部分,该层主要由系统软件和必要的硬件设备组成,包括监控主机、打印机、UPS电源。系统软件具有良好的人际交互界面,对采集的现场耗电、耗水、耗气等数据信息经过计算处理,并以图形、数显等方式反映现场的运行状况。
2)网络通讯层
该层是数据信息交换的桥梁,负责对现场设备回送的数据信息进行采集、分类和存储等工作的同时,转达上位机对现场设备的各种控制命令。
3)现场设备层
现场包括ACR多功能电力仪表、终端电能表计、水表、气表、集中供冷供热表,负责采集电力现场的各类数据和信息状态,发送给网络通讯层,同时也作为执行单元,执行网络通讯层发出的指令。
监测建筑数据展示应包括:
4.3 设备参数列表
4.4系统功能及软件界面
系统对电、水、气能耗实时采集、动态监测、能耗分析、成本核算、绩效考核和报表发布等功能,实现校园能源管理精细化,促进节能降耗。
4.4.1 能耗数据对比分析
概要显示当月、当年用能情况,并与往年同期用能进行对比,掌握用能趋势。实时动态监测企业当前用电功率。通过设置每日用能的计划值,实现用能的定额管理,并与实际用能进行对比,对可能出现的用能突增进行预警,全局掌握校园的用能情况。
4.4.2趋势曲线分析
通过用能趋势图,快速定位校园用能负荷高峰,并逐级定位高峰能耗的组成,为移峰填峰找到依据。
4.4.3 分类、分项统计能耗数据
将各类能源监测数据(水、电、气)接入到一套能耗监测系统中,改变原来多头管理的局面,清晰的掌握校园能耗的构成,避免能耗改造过程中降低某一类能耗的同时增加了其他类能耗的支出。
4.4.4 能耗数据综合分析
将校园能耗数据同建筑面积、校园人口、环境温度等参数进行综合比较,系统根据需要建立不同的能耗分析模型,科学、准确的判断一个校园能耗的高低,从而综合分析影响能耗的因数。
4.4.5能耗数据的实时监测
系统具备良好的开放性,可对用户需求进行功能扩展,在基本分析功能的基础上为用户定制个性化报表和分析模板;系统具有报警管理功能,负责报警及事件的传送、报警确认及报警记录功能以便告知用户或供用户查询;系统具备权限管理、系统日志及系统参数设置等功能。
5 结束
能源管理监控系统分别对校园中各个分散分布的区域配电所进行独立测量,能耗管理部门实时掌握高校各区域的水电数据及其能耗负荷的变化,从而及时做出可行性调整,制定相应的管理制度 ,为进一步节能改造提供准确的数据支撑,让系统真正运行起来起到节能的效果。
参考文献:
[1] 上海安科瑞电气股份有限公司产品手册.2013.01.版
[2] 基于ACREL-5000的大型公共建筑能耗监测系统设计与应用[J.]
能耗管理分析系统在医疗卫生建筑中的应用 安科瑞鲍静君
1 概述
近些年我国的医疗事业发展迅速,引进了相当多的高科技医疗设备,医疗向大型化、集团化发展,医疗技术水平可与欧美等发达国家相媲美,同时带来的则是能源消耗的直线上升,消耗的能源包括电、油、气、水等,能源消耗量大。医院属于公共建筑,因此,对于医院行业的能耗管理系统,我们希望达到的目的是在保证一定的安全性、舒适度和便利度的条件下实现在能源的消耗量下降的同时提高能源使用的品质。在提高品质的过程中,也在一定程度上节省了能源的消耗,提高了能源的使用效率,做到能源消耗过程中从质和量两方面的改善。
2 医疗卫生建筑能耗特点
与办公楼宇、商场、宾馆酒店等公共建筑相比较,医院的能源消耗指标相对较高。,用能设备的种类多,涵盖医院建筑、办公建筑、医疗设备、办公设备、交通工具等;二,具有单位多、分类广、特点不同、层次复杂等特点;三,医院耗能涉及水、电、热力、煤气、天然气、燃油等各种资源。尤其用电负荷大,占总能源消耗的80%左右,并且用电负荷的起伏变化也很大,因为季节交替、气候变化、昼夜轮回、人流量变化等因素的影响,用能整体具有不恒定的特点,从节能的角度考虑,节能空间也是巨大的。
因此,这种情况下,要实施精细化管理,必然要了解医院的各部位的能耗情况,掌握各类能源在时间、空间上的分布规律,借助一定的辅助分析工具对医院的能耗进行指标量化。所以亟需对医院的能耗实施分项计量和对能源消耗情况进行监测,这是所有节能管理工作的基础。
3 医疗卫生建筑能耗管理系统的可行性分析
随着GB 50189—2005《公共建筑节能设计标准》的实施,能耗管理系统已在全世界范围内的大型公共建筑中成功应用,并且带来了良好的经济效益和社会效益。医疗卫生建筑能耗管理系统是一个大型的综合自动化系统,它采用通用的软件平台、一致的硬件架构、统一的人机界面,通过对相关系统的集成和互联,建立了一个高度共享的信息平台,实现建筑内各部门系统的信息互通与资源共享,从而提高了医院日常管理与调度工作的效率和部门运营的整体服务水平。
另外,通过智能通信管理器将数据信息上传至综合监控系统。采用这种方式不仅能确保采集的设备电能数据能够及时发送到监控系统,而且可靠性高、系统构成简单、经济,便于集中管理。在此基础上,采用可靠的能耗管理软件、硬件,完全可以建立一套完整的、具有水平的医疗卫生建筑能耗管理系统。
4 能耗管理分析系统在上海华山医院病房新建工程中的应用
4.1项目概况
上海华山医院病房楼是一幢医用建筑,建筑面积约为2万平方米。根据配电系统管理和能耗监测的要求,需要对楼内的高压进线、低压配出线和各楼层内配电箱进行电力监控,实现对病房楼内用电量和用水量的在线监测,方便对该建筑群的能耗管理,以保证用电的安全、。
Acrel-5000建筑能耗分析管理系统的能耗数据采集方式包括人工采集方式和自动采集方式。通过人工采集方式采集的数据包括建筑基本情况数据采集指标和其它不能通过自动方式采集的能耗数据,如建筑消耗的煤、液化石油、人工煤气等能耗量。通过自动采集方式采集的数据包括建筑分项能耗数据和分类能耗数据,由自动计量装置实时采集,通过自动传输方式实时传输至数据中心。
4.2组网结构
本系统主要由数据采集层、数据传输网络、能效管理系统软件三部分组成。
1、数据采集层
通过安装在能耗监测仪表箱(柜)中的带数字接口的智能电力仪表,实施对负荷用电量的实时监测。监测数据包括:电压、电流、有功功率、无功功率、功率因数、有功无功电能、谐波、环境与开关状态、事件记录等用电参数。监测对象包括:电力需求侧中低压馈线回路、主要耗能机电设备、医院内其他耗能设施。同时也可以对用水量、用气量、热量等通过电子式流量表、电子式热量表等现场智能计量装置实现数据采集。根据现场条件和系统应用的要求,采集的数据也可以取自用户的其他智能系统的数据接口。
2、数据传输网络
通过在能耗监测仪表箱(柜)中安装的能耗智能数据网关,实时采集能耗计量仪表的数据,并且通过TCP/IP网络传输到能耗监控中心。无需远距离布线,施工简单可靠。智能数据网关提供多种接入方式,支持包括RS-485/RS-232总线、光纤、工业以太网、433M无线、GSM/GPRS/CDMA网络传输等多种方式。
3、用电及能效管理系统软件
完成数据采集、校验、分析、处理、输出、系统维护、授权使用权限分级控制等;并可将现场运行的重要数据、报警信息、故障信息等传送到企业决策人员。
4.3 设备参数列表
4.4系统设计参数
4.5.1系统能耗监测由能源监控平台、交换机、多功能电表、通讯转换器、远程水表等设备组成,本系统实现的功能为水、电耗的集抄。
4.5.2支持统一网络架构下的电力、水等能源数据的采集和管理,能耗数据采集无需在多个不同系统中集成,能量监测与管理系统包含丰富的功能,能够对建筑物或建筑群中各类能源(电、水)进行分别统计、统一管理并提供能耗数据自动采集、分析和挖掘、持续优化。
4.5.3系统采集来自智能测控单元装置送来的参数,包括每个用电回路的实时电能值和各种告警信息,各水表的用水量等,并实时显示采集上来的各个参数。
4.5.4各能源管理组逐时、逐日、逐月、逐年能耗值报告,帮助用户掌握自己的能源消耗情况,找出能源消耗异常值。
4.5.5系统支持基于Internet的远程浏览,不同的能源管理部门可在不同的地点同时查看所需能源的消耗情况。
4.6 系统功能及软件界面
4.6.1分类、分项能耗数据统计
系统具备历史数据、报警信息等的存储功能,存储历史数据保存时间大于三年。系统同时具备将分类、分项能耗数据按“需要发送至上级数据中心的能源数据”的要求发送至上级数据中心的功能。界面如图1。
4.6.2能耗数据的实时监测
系统具备良好的开放性,可对用户需求进行功能扩展,在基本分析功能的基础上为用户定制个性化报表和分析模板;系统具有报警管理功能,负责报警及事件的传送、报警确认及报警记录功能以便告知用户或供用户查询;系统具备权限管理、系统日志及系统参数设置等功能。界面如图2。
4.6.3用能情况的同、环比分析
对各分类、分项能耗(标准煤量或千瓦时)和单位面积能耗(标准煤量或千瓦时)进行按月、年同比或环比分析。可预置、显示、查询和打印常用建筑能耗统计报表。界面如图3。
4.6.4建筑能耗数据分析
系统对分类、分项能耗数据进行采集汇总后,可生成各种数据图表、饼图、柱状图等,实时反映和对比各项采集数据和统计数据的数值、趋势和分布情况。系统可按总能耗和单位面积能耗进行逐日、逐月、逐年汇总,并以坐标曲线等各形式显示、查询和打印。界面如图4。
4.6.5 远程网络访问功能
系统以Web发布后可进行远程网络访问。基于.Net平台,使用ASP.Net、JQuery技术开发,可通过Internet访问,具有跨平台的特性,用户可通过各种移动终端(笔记本、平板电脑、手机等)访问。界面如图5。
图5 跨平台跨网络数据访问
4.7结语
上海华山医院采用Acrel-5000能耗管理技术,建立了对整个医院设施能源系统的监视管理,通过对负载能耗设备的能耗与能效数据实时采集监视,实现了对能源系统实时能耗的有效监测管理,提供了用户能源管理系统运营管理的有效工具和能耗成本管理工具,为进一步的节能增效措施提供分析手段,预期效果已开始初步显现:
Acrel-5000能耗管理系统通过全时的全区域分类数据的上传,不仅降低了大面积、大体量设施能耗的管理强度,还提供各种分类的报表,能耗曲线和趋势分析,提高运营管理的效率。
Acrel-5000通过对照明、空调、通风等各类负载自动生成细节分项数据,为管理上提供了强有力的成本管理控制工具。
通过实践证明,Acrel-5000能耗管理系统在医疗卫生行业的应用,带来了很直观的节能经济效果,以及良好的社会效益、环境效益,不仅对医疗卫生行业,对于其他大型公共建筑、综合建筑群、工业企业、基础设施、大型园区等都有很好的借鉴意义。